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We deal with the Cauchy problem for nonlinear impulsive partial differential 
equations of first order. Theorems on impulsive differential inequalities are 
obtained. Comparison results implying uniqueness criteria are proved. 

1. INTRODUCTION 

Most evolution processes in nature are characterized by the fact that at 
fixed moments of time the parameters of the system are abruptly changed. 
This was the reason for the development of the theory of impulsive 
ordinary differential equations, and this theory has been elaborated to a 
considerable extent (Bainov et al., 1989; Bainov and Simeonov, 1989). 

First-order partial differential equations have the following property: 
the problem of existence of their classical solutions is closely connected 
with the problem of solving systems of ordinary differential equations. 
Ordinary differential inequalities find numerous applications in the theory 
of first-order partial differential equations. Such problems as estimates of 
solutions of partial differential equations, estimates of the domain of the 
solution, estimates of the difference between two solutions, and criteria for 
uniqueness are classic examples (Kamont, 1979; Lakshmikantham and 
Leela, 1969; Ladde et al., 1985; Szarski, 1965). We note that the develop- 
ment of the theory of partial differential inequalities is connected with the 
names of V. Lakshmikantham, S. Leela, and J. Szarski. 

We start the investigation of the corresponding theory for first-order 
impulsive partial differential equations. We prove natural generalizations of 
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theorems on differential inequalities. We show that impulsive ordinary 
differential inequalities find application in proofs of theorems concerning 
the estimate of solutions and in the uniqueness theory of impulsive partial 
differential equations. We note that the start of the theory of impulsive 
partial differential equations was made in Erbe et al. (1991), Rogovchenko 
(1988), and Rogovchenko and Trofimchuk (1986). 

2. PRELIMINARY NOTES 

We denote by C(X, Y)  the class of all continuous functions from X 
into Y, where X and Y are metric spaces. We will be using vectorial 
inequalities, understanding that the same inequalities hold between their 
respective components. Suppose that a > 0, 

~=(~ l  . . . .  ,c%): [0, a) ~ R "  

f l=( f l ,  . . . . .  fin): [0, a) ~ R "  

are given functions and c~(x) < fl(x) for xe[O, a). 
Let 

E = {(x, y ) e R  l+": x e[O, a), e(x) < y < fl(x)} 

Suppose that 

0 < x l  <x2 < ' "  " < x k  < a  

are given numbers and Xo = 0, Xk +~= a. 
We define 

F i = { ( x , y ) ~ E : x i < x < x i + l } ,  i = 0 ,  1 , . . . , k  

and F =  F o u F ~ u . .  'UFk.  
Let C~mp[E, R] be the class of all functions Z: E ~ R such that: 

(i) The functions Ztr,,  i = O, 1 . . . . .  k, are continuous. 
(ii) For each i, 1 < i < k, x = xi, there exists 

lim Z(t ,  s) = Z ( x  - ,  y), ~(x) < y < fl(x) 
(t,.) ~ (x.y) 

l < X  

(iii) For each i, 0 < i < k, x = xi, there exists 

lim Z(t ,  s) = Z ( x  +, y), ~(x) < y < fl(x) 
( t , s )  ~ ( x , y )  

ty> x 

(iv) For each i, 0 <- i < k, x = xi, we have 

Z(x ,  y) = Z ( x  +, y), ct(x) < y < fl(x) 
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For a function ZUCimp[E, R] we define 

AZ(x~, y) = Z(xi,  y) - Z ( x T  , y), i = 1 . . . . .  k 

Let D = E x R •  n, ~ = E •  Suppose that f:D--+R, g =  
(gl . . . . .  gk): D--+Rk, ~b: [~t(0), fl(0)] --+R are given functions. We consider 
the Cauchy problem 

Zx(x, y) =f(x ,  y, Z(x,  y), Zy(x, y)) (1) 

Z(0, y) = ~(y), y ~[~(0), fl(0)] (2) 

AZ(xi,  y) = gi (x~, y, Z ( x T  , y)), y ~[~(x;), fl(xi)] (3) 

i =  1 . . . . .  k; Zy(X,y) =(Ze,(X,y ) . . . . .  Zy,(X,y)) 

Definition 1. A function Z: E--+R is a solution of (1)-(3) if 

(i) Z~Cimp[E, R], there exist derivatives Zx(x ,y)  and Ze(x ,y  ) for 
(x, y)~ F, and Z satisfies (1) on F. 

(ii) Z satisfies (2) and (3). 

Let 
k 

S = U {c~F,c~[(xe, xi+~) x R " ] }  
~=o 

A function Z ~ Cim p [E, R] will be called a function o f  class C~tmp[E, R] if 
Z has partial derivatives Zx(x, y) and Zy(x, y) for (x, y) eF  and there exists 
the total derivative of Z on S. 

We define the functions I0, I+, and I_ as follows. For each (x, y ) ~ E  
there exist sets of integers Io[x, y], I+ [x, y], and I_ [x, y] such that 

Io[x, y] u I +  [x, y] u I _  [x, y] = {1 . . . . .  n} 

and 

yi=o~i(X) for i e I_[x ,y]  

y i=f l i (x)  for iEl+[x,y] 

�9 i ( x ) < y i < f l i ( x )  for ielo[x,y] 

3. MAIN RESULTS 

3.1. Differential Inequalities with Impulses 

In this part of the paper we consider differential inequalities generated 
by (1)-(3). 

We introduce the following assumptions. 
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H1. ~, f l eC([O,a) ,R" )  and the functions ct[ii and 
Ii = (xi, xi+ i), i = O, 1 . . . .  , k, are of class C 1. 

H2. ~(x) < fl(x) for xe[0,  a). 
H3. f :  f~-~R and for ( x , y ) e S ,  p e R ,  we have 

f ( x ,  y, p, q) - f ( x ,  y, p, q) 

+ ~ ~; (x)(qi - q;) + ~ fl~ (x)(qi - [h) < 0 
i ~ l  _ [x ,y]  i e l  + [x ,y]  

where q = (ql . . . . .  qn), 4 = (41 . . . . .  4n), and 

q~ < qi for i e I _  [x, y] 

qi -> qi for ie I+ [x, y] 

Bainov et  ai. 

fl[[i' where 

(4) 

qi=?h for ieIo[x,y] 

1 < i < k, the functions gi: ~ - * R  are such that H4. For each i, 
6i ( =p +) + gi (x, y, p) are nondecreasing on R. 

Theorem 1. Suppose that the following conditions hold: 

1. Assumptions H 1 - H 4  are satisfied. 
2. U, VeC*mp[E, R] satisfy 

U(0, y) < V(0, y) for ~(0) <- y < fl(0) (5) 

3. The differential inequality 

U~(x, y) - f ( x ,  y, U(x, y), Uy(x, y)) < Vx(x, y) - f ( x ,  y, V(x, y), Vy(X, y)) 

(6) 

holds true on F and 

A U(x,, y) - gi (xi, y, U(x i-, Y)) < A V(xi, y) - gi (x~, y, V(x 7 ,  Y)) (7) 

where o~(xi) <- y < fl(xi), i = 1 . . . . .  k. 
Then we have 

U(x, y) < V(x, y) for (x, y) eE  (8) 

Proof. If  assertion (8) is false, then the set 

Z = {xe[0, a): there exists ye[ct(x), fl(x)] such that U(x ,y )  > V(x, y)} 

is nonempty. Defining ff = infZ,  it follows from (5) that 2 > 0 and there 
exists )7 = ()7~ . . . . .  )~,) e[e(2), fl(2)] such that 

U ( x , y ) <  V(x ,y )  for ( x , y ) e E n ( [ O ,  2) x R") 
(9) 

U(2, y') = V(~, y') 

Now, there are three cases to be distinguished. 



Impulsive Partial Differential Inequalities 

Case 1. (2, 37) ~ Int F. Then 

U y ( X ,  37) = Vy(X, y ' )  

ux(2, 37) _> vx(~, y3 

which leads to a contradiction with (6). 

Case 2. (2, y')~ S. Then we have 

Uy,(2, y-) - Vy,(2, 37) >- 0 for 

Uyi(2, 37) - Vy~(2, y') <- 0 for 

Uy,(Y,, 37) - Vy,(2, 37) = 0 for 

For xe[0,  2] we put 

where 

i~ I+ [2, 37] 

i ~ I _ [ 2 ,  y'] 

i ~ Io[2, 37] 

r(x) = (r~ (x) . . . . .  r , (x))  
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(10) 

r i ( x ) = ~ i ( x )  for i ~ I _ [ 2 ,  y'] 

r i ( x ) = f l i ( x  ) for i ~ I+[2 ,  y'] (11) 

for ie lo[2,  y'] 

function s(x) = U(x, r(x)) -- V(x,  r(x)), 

r i ( x )  = y ,  

We consider the composite  
x ~ [ 0 ,  ~7]. It attains its maximum at x = 2 and therefore 

V~(~, 37) - Vx(2, y') + ~ ~ (2)[Vy,(~, y') - Vy,(2, y")] 
ie I _ (~,y-] 

+ ~ fl;(2)[Uy,(2,37) - Vy,(2,37)] >- 0 (12) 
i E l  + [s 

From (4), (6), (9), and (10) it follows that 

Ux(2, 37) - Vx(2, 37) 

< f ( 2 ,  37, U(2, 37), Uy(x, 37)) -- f ( 2 ,  37, V(~, 37), Vy(~, 37)) 

-~< --  E 0~; (2 ) [ ey / (2 ,  37) - -  V y i ( X  , 37)] 
i~ l _ [],y'] 

- Y~ ~;(2)[u~,(2, 37) - v y , ( 2 ,  37)] 
i E l  + [2,y'] 

which contradicts (12). 

Case 3. (2, 37) ~ E \ F .  Then there exists i, 1 --- i -< k, such that 2 = x;. 
Then we have from (9) 

u(~- ,  y-) - v(2 -, y )  ~ 0 ( 1 3 )  
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It follows from (7), (13) that 

U(~, 37) -- V(~7, y~) < U(~7 - ,  37) + gi (~, 3 7, U(~ - ,  37)) 

- [ V(~  - ,  3~) + gi (~7, 37, V ( f f - ,  y~))] < 0 

which contradicts (9). 
Hence Z is empty and statement (8) follows. �9 

Remark 1. Analogous results for the classical case are considered in 
Lakshmikantham and Leela (1969), Szarski (1965), and Kamont  (1980). 

Remark 2. In Theorem 1 we can assume instead of (6) that 

Ux(x, y) <- f (x ,  y, U(x, y), Uy(x, y)) 

Vx(x, y) >- f (x ,  y, V(x, y), Vy(x, y)) 

where for each (x, y ) e F  an equality may be attained in at most one place. 
We introduce the following assumptions. 

H5. The function a: [0, a) x R+-~R+ is continuous and a(x, 0 ) = 0  
for xe[0,  a). 

H6. The right-hand maximum solution of the problem 

W'(x)  = ~(x, W(x)), w(o)  = o 

is W(x)=0,  x~[0, a). 
H7. f satisfies the inequality 

f (x ,  y, p, q) - f ( x ,  y, p, q) >- - a(x, fi - p) on fl 

where p -/~. 
H8. There are functions ~r~ ~C([0, a) x R+,  R§ ), i = 1 . . . . .  k, such 

that a~(x, 0) = 0 for xe[0,  a) and 

g~ (x, y, p) - g~ (x, y,/~) -> - a~ (x,/~ -- p) on fi 

where p -< t0. 

Theorem 2. Suppose that the following conditions hold: 

1. Assumptions H1-H8 are met. 
2. U, VeCi*mp[E, R] satisfy the initial inequality 

U(0, y) < V(0, y), e(0) < y -</3(0) (14) 

3. The differential inequalities 

Ux(X, y) <- f (x ,  y, U(x, y), Uy(x, y)) 
(15) 

Vx(x, y) > f (x ,  y, V(x, y), Vy(x, y)) 
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hold true on F and 

AU(xi, y) < gi(x i ,  y, U(xT,  y)) 
(16) 

A V(x~, y) > g~(x~, y, V(xT ,  y)) 

where ~(x  t )  < y < f l (x i ) ,  i = 1 . . . . .  k .  
Then we have 

U(x, y) < V(x, y) on E 

Proof. Suppose ao ~(Xk, a). We prove that 

U(x,y) <- V(x,y) for (x,y)~([O, ao) x R ' ) c~E  (17) 

Consider the problem 

W'(x) = ~(x, W(x)) + 

W(O) = e (18) 

W(x,) = W(x U ) + a~ (xi, W(x/- )) + e, i = 1 . . . . .  k 

There exists eo > 0 such that for 0 < e < eo there exists a solution co(.; e) of  
(18) and this solution is defined on [0, ao). 

Let V(x, y) = V(x, y) + co(x; e) for (x, y) 6([0, ao) x R')  n E. We prove 
that 

U(x, y) < ~'(x, y) on ([0, ao) x R')  c~E (19) 

We have that 

~'x(X, y) = Vx(x, y) + co'(x; e) 

> f (x ,  y, V(x, y), Vy(x, y)) + o)'(x; e) 

=f(x ,  y, V(x, y), Vy(x, y)) + f ( x ,  y, ~'(x, y), ~'y(X, y)) 

- f ( x ,  y, ~'(x, y), ~'y(X, y)) + co'(x; e) 

> f (x ,  y, ~'(x, y), ~'y(X, y)), (x, y ) e F  n([O, ao) x R ' )  

Thus we see that 

~'x(X, y) > f (x ,  y, V(x, y), Vy(x, y)) on F n ([0, ao) x R") 

It follows that 

l~(x;, y) - l~(x~-, y) 

= V(x~,  y )  + w ( x i ;  e) - -  V ( x / - ,  y )  - -  c o ( x 7  ; ~) 

> gi (x,, y, V(xi-,  y)) + co(xi ; e) - co(x7 ; e) 

>g i (x .  y, V(xT ,  y)) - ai(xs, co(x/- ; e)) + ~o(xi; e) - co(x7 ; e) 

> g~ (x~, y, V(xi-,  Y)), ~t(x~) ~ y ~ fl(x,), i = 1 . . . . .  k 
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Thus we have 

A ~'(xi, y) > gi (xi, y, V(x 7 ,  Y)) 

where ~(x~) <-- y < fl(x,), i = 1 . . . . .  k. 
Since U(0, y) < I7(0, y), ~(0) < y < fl(0), we deduce from Theorem 1 

the assertion (19). Since lim~_~0og(x;e)=0 uniformly with respect to 
x ~[0, ao), we obtain (17). The constant a0 ~(xk, a) is arbitrary; therefore 
the proof is complete. �9 

We introduce the following assumptions: 

H9. 6: [0, a) x R ~ R + ,  R_ = ( - o o ,  0], is continuous and 6(x, 0) =0  
for xe[0,  a). 

H 10. For p </~ we have 

f ( x ,  y, p, q) - f ( x ,  y, p, q) < ~(x, p - p )  

on f~. 
H l l .  ai:[0, a) x R  ~ R + , i = l , . . . , k ,  8i are continuous and 

~i(x, 0) = 0  for xE[0, a). 
H12. For p < p we have 

gi(x, y, p) -- g,(x, y,/~) < ~,(x, p --/~) on ~, i = 1 , . . . ,  k 

H13. The left-hand minimum solution of the equation 

W'(x) = e(x, W(x)) 

satisfying the condition l imx_ , -  W(x) = 0 is W(x) = 0, x~[0, a). 

Theorem 3. Suppose that the following conditions hold: 

1. Assumptions H 1 - H 4  and H9-H13 are met. 
2. U, V~C*p[E, R] satisfy the initial inequality (5) and the differential 

inequalities (15) hold on F. 
3. Estimates (16) are satisfied. 

Then we have 

U(x, y) < V(x, y), (x, y) ~E (20) 

Proof. First we prove (20) for ( x , y ) e E n ( [ O , a - e ) x R " ) ,  where 
a - xk > e > O. Let 

0 < Zo < min{[V(0, y) - U(0, y)]: ~(0) - y < 8(0)} 
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For 6 > 0, denote by co(.;  6) the right-hand minimum solution of  the 
problem 

W'(x)  = --6(x,  - W(x)) - 6, W(O) = Zo (21) 

W(xi)  = W ( x 7  ) - ffi(xi, - W ( x 7  )) - 6, i = 1 . . . . .  k 

If Zo > 0 is fixed, then to every e > 0 there corresponds 6o > 0 such that for 
0 < 6 < 60 the solution o~( �9 ; 6) of (21) exists and is positive on [0, a - e). 
Suppose that 6 > 0 is a constant such that ~o(.; 6) satisfies the above 
conditions. Let 

U(x, y) = U(x, y) + aJ(x; 6) 

for (x ,y )eEc~([O,  a -  ~) • R"). We will prove that 

U(x, y) < V(x, y) on E n ([0, a - 8) x R") (22) 

From assumptions H3 and H9-H13 it follows that 

O~(x, y) = Ux(x, y) + co ' (x ;  ,~) 

< f ( x ,  y, U(x, y), Uy(x, y)) + m'(x; 6) 

+[  f (x ,  y, V(x, y), Vy(x, y)) -- f ( x ,  y, U(x, y), Vy(x, y))] 

<f(x ,  y, U(x, y), Uy(x, y)) + to'(x; 6) + ~(x, -o)(x;  6)) 

=f (x ,  y, U(x, y), Uy(x, y)) - ,~ 

for (x, y) e F ~ ([0, a -- e) • R"). Then we have 

0x(x, y) < f ( x ,  y, U(x, y), Uy(X, y)) 

for (x, y ) e F  n([O,a  - e )  x R"). 
Now we prove that 

AU(x;, y) < gi(x~, y, U ( x T ,  y)) (23) 

where a(xi) < y <-fl(xi); i = 1 . . . . .  k. 
From assumptions H9-H13 and from (16), (21) it follows that 

A0(x,, y) < g,(xi, y, U(xF ,  y)) + re(x;; 6) - ~o(x7 ; 6) 

<-g,(xi, y,  U(x[-,  y)) + ~f(x,, -o.)(xF ; 6)) 

+ ~o(x,; 6) - ~o(x.; 6) 

= g; (x;,  y ,  0 ( x  7 ,  Y)) - 

where o~(x~) < y <- fl(xt), i = 1 . . . .  , k, which completes the proof of (23). 
Since 0(0, y) < V(0, y) for ~(0) < y -< fl(0), then we have estimate (22) by 
virtue of Theorem 1. 

Since e is arbitrary, inequality (20) holds true on E. [] 
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3.2. Remarks on Strict Differential Inequalities 

The papers  of  H a a r  (1928) and N a g u m o  (1938) initiated the theory o f  
partial  differential inequalities. The classical theory is described in detail in 
L a k s h m i k a n t h a m  and Leela (1969), Ladde  et al. (1985), and  Szarski 
(1965). A theorem on strict differential inequalities is very impor t an t  in this 
theory. 

In  Theo rem 1 we assume tha t  the impulses in differential inequali ty (6) 
are given on fixed hyperplanes  x = x;, i = 1 . . . . .  k. N o w  we formula te  a 
theorem on strict differential inequalities in a more  general case. 

Let  b = (bl . . . .  , bn) and c = (cl . . . .  , cn), where 

b i ~ inf{e/(x): x~[O, a)}, i = 1 . . . .  , n 

C i >-- s u p { i l l ( X ) :  x6[O, a)}, i = 1 . . . .  , n 

Suppose that  we have ~k = (~1 . . . . .  ~k) ~C([b, c], R k) and 

0 < ~bI(Y) < ~2(Y) < "  "" < ~k(Y) < a ,  y~[b,c] 

Let ~Oo(y ) = 0 and ~Ok+ I(Y) = a for  y~[b, c]. 
We define 

r ' i={(x ,y)~E:~Oi(y)<x<~i+l(y)} ,  i = 0 , 1  . . . . .  k 

and 

r=ro r   
Let CqJ[E, R] be the class o f  all functions Z:  E---. R such that: 

(i) The  functions ZI~ i, i - - 0 ,  1 . . . . .  k, are cont inuous.  
(ii) For  each i, 1 -< i < k, x = ~ki(y) there exists 

lim Z(t, s) = Z ( x - ,  y), (x, y) e E  
( t , s )  ~ (x,y) 

t - < x  

(iii) For  each i, 0 < i < k, x = ~k,.(y) there exists 

lim Z(t, s) = Z(x +, y), (x, y) ~ E  
( t , s )  ---, (x,y) 

t > x  

(iv) Fo r  each i, 0 < i < k, x = r  (x ,y)~E we have 

Z(x, y) = Z(x +, y) 

A function Z~C~k[E, R] will be called a funct ion of  class C*~O[E, R] if 
Z has part ial  derivatives Z~(x, y), Zy(x, y) for (x, y )~r"  and there exists the 
total  derivative of  Z on the set 
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We introduce the following assumptions. 

H14. ~, fl~C([0, a), R") and ~(x) < fl(x) for x~[0,  a). 
H15. ~, fleCl((0, a), R"). 

Now we formulate a generalization of Theorem 1. 

Theorem 4. Suppose that the following conditions hold: 

1. Assumptions HI4,  HI5 are met. 
2. F: E x R x Rn ~ R; for (x, y )~S*,  p e R ,  we have 

F ( x , y , p , q ) - F ( x , y , p , ~ )  + ~ e~(x)(q~-gt~) 
i ~  1 _ I x , y ]  

+ ~ fl; (x)(q~ -- (tg) <- 0 
i E l  + Ix,y] 

where q = (ql . . . .  , q.), q = (ql . . . .  , #.), and 
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qi <-gh for ie I_[x ,y]  

qi > qi for isI+ [x, y] 

qi=gh for ieIo[x,y] 

For  each i, 1 < i < k, the functions g* : E x R ~ R are such that . 

6* (p) = p  + g *  (x, y,p)  are nondecreasing on R. 
4. U, V~C*~[E, R] satisfy the initial inequality (5), and the differen- 

tial inequality 

Ux(x, y) - F(x, y, U(x, y), Uy(x, y)) < Vx(x, y) - r (x ,  y, V(x, y), Vy(x, y)) 

holds true on ~, and for each i, 1 -< i < k, x = ~i(Y), ( x , y ) ~ E  we have 

U(xi, y) - U(xF , y) - g* (xl, y, U(xF,  y)) 

< V(x~, y) - V(xF,  y) - g* (x~, y, V(xF,  y)) 

Then we have 

U(x,y) < V(x,y) for ( x , y ) ~ E  (24) 

We omit the proof  of  Theorem 4. 

3.3. Comparison Theorems for Differential Inequalities 

Here we prove theorems on estimates of functions satisfying impulsive 
partial differential inequalities by means of solutions of impulsive ordinary 
differential equations. 

We define 

Pj=(x i ,  xi+l), i = 0 , 1  . . . . .  k; J = [0, a), P = P o u P t ~ ' " w P k  
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Let Cimp[J  , R] be the class of  all functions W: J ~ R  such that: 

(i) The functions wle ,, i = 0, 1 , . . . ,  k, are continuous.  
(ii) For  each i, 1 -< i -< k, x = xe, there exists 

lim W(t) = W ( x - )  
t - - ~  X 

t < X  

(iii) For  each i, 0 -< i < k, x = xi, there exists 

lim W(t) = W(x +) 
t " - )  X 

t > X  

(iv) For  each i, 0 < i < k, we have W(xi) = W(x~-). 

Let S x = { y : ( x , y ) e E } ,  O<_x<a. For  Z~Cimp[E,R] we define a 
function TZ: [0, a) ~ R+ by 

(ZZ)(x) = max{lZ(x, Y)[: Y eSx } 

For  q ~ . R  n w e  define [q] = (Iql I . . . . .  Iqn 1). 

Lemma 1. Suppose that  the following conditions hold: 

1. a, f le C(J, Rn) and 

�9 (x) < fl(x) for  x e J  

2. Z ~ Cim p [E, R]. 

Then TZ6Cimp[J, R+ ]. 

We omit  the p roo f  o f  Lemma 1. 
We introduce the following assumptions: 

H16. a: [0, a) x R+ -- ,R§ is a cont inuous function. 
H17. 5 = (al . . . . .  ak): [0, a) x R§ --, Rk+ is a cont inuous function. 
H18. For  each i, i = 1 . . . . .  k, the function 7i(P) = P  + 5i(x,p) is non- 

decreasing on R+ .  

Lemma 2. Suppose that  the following condit ions hold: 

1. Assumptions H 1 6 - H 1 8  are met. 
2. ( p E C i m p [ J  , R+]  and (p(0) < r/o, r /oeR+.  
3. ~o( . ;  r/o): [0, a) -~R+ is the maximum solution o f  the problem 

W'(x) = a(x, W(x)), x ~ e  

w ( o )  = r/0 (25)  

W(xi) = W(x7  ) + 6i(xi, W(xF )), i = 1 . . . . .  k 
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4. For x ~P  we have 

9 _  ~o(x) _ ~(x, ~o(x)) 

where 9 _  is the left-hand lower Dini derivative and 

q)(xi) < ~0(x/-) + 8i(xi, (o(xF)), i = 1 . . . . .  k 

Then we have 

qffx) < co(x; r/o),  x~[0, a) 

We omit the simple proof of Lemma 2. 
Introduce the following assumptions: 

H19. G: E x R+ x R~_ ~ R +  is a continuous function. 
H20. For (x, y ) ~ E  we have 

G ( x , y , p , q ) -  ~ o~;(x)qt+ ~ fl;(x)qi < a ( x , p )  
i t  I _ [x ,y]  iE  1 + [x ,y]  

where q = ( q l , . . . ,  qn) and qi = 0 for ielo[x, y]. 

Remark 3. If  E is the Haar pyramid 

{(x, y): x~[0, a), lY, I - ai - Lix, i = 1 . . . . .  n} 

where 0 < aL~ < a~, i = 1 . . . .  , n, and 

G(x, y, p, q) = a(x, p) + ~ Leqi 

then condition (28) is satisfied. 

Theorem 5. Suppose that the following conditions hold: 

1. Assumptions H 1 - H 2  and H16-H20 are met. 
2. U~C~p[E,  R]. 
3. The differential inequality 

IUA x, Y)I -< a(x,  y, [U(x, Y)I, [UAx, Y)]) 

for (x, y ) e F  and the initial estimate 

[v(O,y)[_<~o, ~o~R+ 

where y e[~t(O), fl(O)] are satisfied. 
4. For each i, 1 < i < k, and ct(x~) < y < fl(xi) we have 

Iu(x,, y)[ ~ IV(x;-, Y)I + S,(x,, [U(x;, Y)I) 

1353 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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5. The maximum solution a~(";r/o) of (25) exists on [0, a). 
Then we have 

]U( x, Y)I <- a~(x; ~/o), (x, y) e E  (33) 

Proof. Let us define tp = TU. Then q~eCimp[J,R+] and q~(0)<~/o. 
Now we prove that r satisfies (26). Suppose that 2 eP.  It follows that there 
exists )7 e [~(2),//(2)] such that 

~o(2) = I u(2,)7)1 

Suppose that (2, y~)eInt F. Then Uy(2, y') = 0 and (28), (30) imply 

~ _  ~(2) <__ Iux(2, )7)1 

___ G(~, )7, IU(2, )7)1, [Uy(2, y')]) - .(2, ~o(~)) 

Suppose that (2,)7)eS. There are two possibilities: 

q~(2) = U(2, )7) (34) 

e,(2) = - u(2, y'3 (35) 

Let us consider the case (34). We have 

Uy,(2,)7) <0 for ieI_[2, y'] 

Uy,(2, y') >- 0 for iel+ [2, )7] (36) 

UyFc,)7)=O for ielo[2, yq 

Let r xe[0 ,2] ,  where r is given by (11). Then 
r -q~(x) for xe[0 ,  2] and r  tp(2). Therefore from (28), (30), and 
(36) we have that 

~ _  ~(2) <_ ~ _  4(2) = Ux(2, y3 + ~ . ;  (2)uy,(2, y) 
i ~  1 _ [ s  

+ Y ~(2)uy,(2,y-) 
i~l + [2,y'] 

<- G(2, )7, IU(2, )7)1, [Uy(2, y~)]) 

+ E ~; (X)Vyi (2 , )7)  + E 8;  ( x )Vy i (2 , )7 )  
ie l _ [Yc,y"] iE l + [2,y-] 

<_ a(2, ~(2)) 

Then we have (26). In a similar way we prove (26) in the case (35). Since 
]U(xF, y)] < q~(xF ) for y e[~(xi), fl(x;)], i =  1 . . . . .  k, we have 

~(x,) = IU(x,, )7)1 < ~(x~-) + ~,(x,, ~o(x;-)) 

Consequently, the estimates (27) are satisfied. Now we obtain (33) from 
Lemma 2. �9 
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In the case when E is the Haar pyramid (29) we have the following 
result. 

Theorem 6. Suppose that the following conditions hold: 

1. Assumptions H1, H2, and HI6 -H18  are met. 
2. U~Cimp[E , R]. 
3. The differential inequality 

tU~,( x, Y)I < 6(x, ]U(x, Y)t) + f~ L~IUy,(X, Y)I (37) 
i=1  

for (x, y ) ~ F  holds true. 
4. The initial estimate (31) and conditions 4 and 5 of Theorem 5 are 

satisfied. 
Then we have 

[U(x, y)[ -< w(x; r/0) 

for (x, y)~E. 

3.4. Estimates of  Solutions of  Differential Problems 

In this section we give an application of Theorem 5. 

Theorem 7. Suppose that the following conditions hold: 

1. Assumptions H 1 - H 2  and H16-H20 are met. 
2. G : E x R +  •  and 

~f(x,y,p,q)l<G(x,y,~pl,[q]) on f~ 

3. g =(g~ . . . . .  gk): ~ -~R~ are such that 

[g(x, y, p)] <- ~(x, [p[) on h 

4. ~b~C([~(O),/~(0)], R), UeC*mp[E, R] is a solution of (1)-(3)  and 

1,~(o, y)l <-- ~o, y e[~(o), ~(o)], ~oeR+ 

5. The maximum solution co( �9 ; ~to) of (25) is defined on [0, a). 

Then we have 

IU(x, y)] - o)(x; ~0) on E 

Proof The solution U of (1)-(3)  satisfies all assumptions of Theorem 
5 and the statement follows. [] 
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3.5. Uniqueness Criteria 

Let us consider two problems--problem (1)- (3)  and the problem 

Zx(x, y) =y(x,  y, Z(x, y), Zy(x, y)) (38) 

Z(0, y) = q~(y), y e[~(0), fl(0)] (39) 

A Z ( x , y ) = ~ , ( x , y , Z ( x F , y ) ) ,  ~(x~) <-y < ~(x~), i =  1 , . . . , k  (40) 

where At: fl ~ R, q~: [~(0), fl(0)] ~ R, and ~ = (gl . . . . .  gk): ~ ---> Rk are given 
functions. 

Theorem 8. Suppose that the following conditions hold: 

1. Assumptions HI, H2, and H16-H20 are met. 
2. The functions f , f ,  g, ~ are such that 

If(x, y, p, q) - jW(x, y,/~, q) l < G(x, y, ~ - ffl, [q - q-I) 

on ~, and 

on ~. 

3. 

, 

5. 
tively. 

[g(x, y, p) - g(x, y, ,6)1 -< t~(x, ~ -/51) 

r/o eR+ and 

t4~(0, y) - qS"(0, y)l -< r/0 for y e[~(0),/~(0)] 

The maximum solution co( �9 ; r/0) of  (25) is defined on [0, a). 
U, UeC*mp[E, R] are solutions of (1)-(3)  and (38)-(40) respec- 

Then we have 

[U(x, y) - U(x, Y) I < o~(x; r/o) on E 

Proof. If we put Z = U -  U, then 2~ satisfies all the conditions of 
Theorem 5 and the statement follows. [] 

Theorem 9. Suppose that the following conditions hold: 

1. Assumptions H1. H2, and HI 6 - H20  are met. 
2. f:  f l - - .R and g: fl--*R k are such that 

[ f ( x , y , p , q ) - f ( x , y , p , q ) l < G ( x , y , ~ v - p l , [ q - ~ ] )  on ~ (41) 

[g(x,y,p) - g ( x , y , p ) ]  < ~(x, Lv - P l )  on ~ (42) 
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3. a(x, 0) = 0 and 6(x, 0) = 0 for xe [0 ,  a) and the maximum solution 
of  the problem 

W'(x)  = ~r(x, W(x)), w ( o )  = 0 

W(xi)  = W(x  Z ) -~- ~i(xi, W(xi-  )), i --" 1 . . . .  , k 

is W(x)  = O, x e J .  
Then the Cauchy problem (1) - (3 )  admits at most one solution U 

which is of  class Cimp[E, R]. 

Proof. If  we put f = f  and ~ = g, then we deduce our theorem from 
Theorem 8. [] 

Remark  4. Suppose E is given by (29). If  assumptions HI ,  H2, and 
H16-H18  are met and 

G(x, y,  p, q) = a(x,  p) + ~ Liq i on 
i=l 

then condition (41) has the form 

~r y, p, q) - f ( x ,  y,  if, q) l 

<a(x ,  ~9 --if]) + ~ L i I q i - q i [  on 
i = 1  
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